Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

3,5-Dicarboxy-2,6-dimethylpyridinium chloride dihydrate

Ji-Yuan Yao

Ordered Matter Science Research Center, College of Chemistry and Chemical, Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: yaojiyuan520@163.com

Received 5 May 2010; accepted 12 May 2010

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.044 ; w R$ factor $=0.120$; data-to-parameter ratio $=14.9$.

In the title compound, $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{NO}_{4}{ }^{+} \cdot \mathrm{Cl}^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, both the cation and the anion have crystallographic twofold rotation symmetry; in the former, one N and one C atom lie on the rotation axis. In the crystal structure, the ions and water molecules are linked via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds into layers parallel to (101).

Related literature

For the structure of a related 3,5-dicarboxy-2,6-dimethylpyridinium salt, see: Rowan \& Holt (1997). For the ferroelectric properties of supramolecular compounds, see: Ye et al. (2008); Hang et al. (2009). For a description of the Cambridge Structural Database, see: Allen et al. (2002).

Experimental

Crystal data
$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{NO}_{4}{ }^{+} \cdot \mathrm{Cl}^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$b=10.7825(10) \AA$
$M_{r}=267.66$
Monoclinic, C2/c

$$
\beta=98.11(3)^{\circ}
$$

$a=8.2301(10) \AA$

$$
c=13.882(2) \AA
$$

$$
V=1219.5(3) \AA^{3}
$$

$$
\begin{aligned}
& Z=4 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.33 \mathrm{~mm}^{-1}
\end{aligned}
$$

Data collection
Rigaku Mercury2 diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)

$$
T_{\min }=0.938, T_{\max }=1.000
$$

Refinement

$\begin{array}{cc}R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044 \quad \mathrm{H} \text { atoms treated by a mixture of } \\ w R\left(F^{2}\right)=0.120 & \text { independent and constrained }\end{array}$
$w R\left(F^{2}\right)=0.120$
$S=1.11$
$T=293 \mathrm{~K}$
$0.50 \times 0.50 \times 0.50 \mathrm{~mm}$

1353 reflections
91 parameters

5826 measured reflections 1353 independent reflections 1204 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.022$ independent and constrained refinement
$\Delta \rho_{\text {max }}=0.26 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.21 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 1 W^{\mathrm{i}}$	0.82	1.72	$2.537(2)$	173
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{Cl} 1^{\mathrm{ii}}$	$0.95(4)$	$2.21(4)$	$3.160(2)$	$180(1)$
O1 $^{\mathrm{iii}}-\mathrm{H} 2 \cdots 2^{\text {ii }}$	$0.79(4)$	$1.95(4)$	$2.720(2)$	$166(3)$
$\mathrm{O}^{\mathrm{O}} W-\mathrm{H} 2 A \cdots \mathrm{Cl} 1^{\mathrm{ii}}$	$0.81(4)$	$2.29(4)$	$3.096(2)$	$177(3)$

Symmetry codes: (i) $-x+\frac{3}{2},-y+\frac{3}{2},-z+1$; (ii) $x+1, y, z$; (iii) $x, y-1, z$.
Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear ; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

The author is grateful to the starter fund of Southeast University for financial support topurchase a single-crystal X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2448).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
Hang, T., Fu, D. W., Ye, Q. \& Xiong, R. G. (2009). Cryst. Growth Des. 5, 20262029.

Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Rowan, K. R. \& Holt, E. M. (1997). Acta Cryst. C53, 106-108.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Ye, Q., Hang, T., Fu, D. W., Xu, G. H. \& Xiong, R. G. (2008). Cryst. Growth Des. 8, 3501-3503.

supplementary materials

Acta Cryst. (2010). E66, o1365 [doi:10.1107/S1600536810017423]

3,5-Dicarboxy-2,6-dimethylpyridinium chloride dihydrate

J.-Y. Yao

Comment

Organic and inorganic complexes or salts can develop supramolecular structures via multiple hydrogen-bonding systems by self-assembly of components which contain abundant hydrogen-bonding sites (Rowan \& Holt, 1997). The present study is a part of systematic investigation of ferroelectric materials (Ye et al., 2008; Hang et al., 2009) that include metal-organic coordination compounds with organic ligands or compounds whose structures consist both of organic and inorganic building fragments.

The asymmetric unit of the title compound is composed of a half of a 3,5-dicarboxy-2,6-dimethylpyridinium cation, a half of a chloride anion and a water molecule. Both cation and anion have crystallographically imposed twofold rotation symmetry (Fig. 1). In the cation, the $\mathrm{C}-\mathrm{O}$ bond lengths in the carboxylic group ($\mathrm{C} 1-\mathrm{O} 1=1.300(2) \AA$; $\mathrm{C} 1-\mathrm{O} 2=1.218$ (2) \AA) conform to the expected values (Allen, 2002). The C3—N1—C3 angle of $126.6(2){ }^{\circ}$ corresponds closely to the average value found in protonated pyridinium ions (122.0 (2) ${ }^{\circ}$). In the crystal structure (Fig. 2), the 3,5-dicarboxy-2,6-dimethylpyridinium cations, the chloride anions and the water molecules are linked via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds (Table 1) to form two-dimensional layers parallel to the (101) plane. Dielectric studies (capacitance and dielectric loss measurements) were performed on powder samples of the title compound pressed into tablets on the surfaces of which a conducting carbon glue was deposited. The automatic impedance TongHui 2828 Analyzer has been used. In the measured temperature ranges (80 to 480 K , m.p. $>480 \mathrm{~K}$), the structure showed no dielectric anomaly.

Experimental

2,6-Dimethylpyridine-3,5-dicarboxylic acid ($1.95 \mathrm{~g}, 10 \mathrm{mmol}$) and concentrated hydrochloric acid (10 mmol) were dissolved in methanol (25 ml). The solution was filtered and left at room temperature for 5 days. Colourless crystals suitable for X-ray analysis were obtained by slow evaporation of the solvent.

Refinement

The pyridinium and water H atoms were located in a difference Fourier map and refined freely. All other H atoms were calculated geometrically and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA, \mathrm{O}-\mathrm{H}=0.82 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{C}, \mathrm{O})$ or $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for the aromatic H atom.

supplementary materials

Figures

Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Atoms with suffix A are generated by the symmetry operation ($2-\mathrm{x}, \mathrm{y}, 0.5-\mathrm{z}$).

3,5-Dicarboxy-2,6-dimethylpyridinium chloride dihydrate

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{NO}_{4}{ }^{+} \cdot \mathrm{Cl}^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=267.66$
Monoclinic, $C 2 / c$
Hall symbol: -C 2 yc
$a=8.2301$ (10) \AA
$b=10.7825(10) \AA$
$c=13.882(2) \AA$
$\beta=98.11(3)^{\circ}$
$V=1219.5(3) \AA^{3}$
$Z=4$
$F(000)=560$
$D_{\mathrm{x}}=1.458 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1418 reflections
$\theta=3.3-27.1^{\circ}$
$\mu=0.33 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism, colourless
$0.50 \times 0.50 \times 0.50 \mathrm{~mm}$
Fig. 2. Crystal packing of the title compound viewed along the b axis. Dashed lines indicate hydrogen bonds.

Data collection

Rigaku Mercury2
diffractometer
Radiation source: fine-focus sealed tube
graphite
Detector resolution: 13.6612 pixels mm^{-1}
CCD_Profile_fitting scans
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
$T_{\text {min }}=0.938, T_{\text {max }}=1.000$
5826 measured reflections

1353 independent reflections
1204 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=27.1^{\circ}, \theta_{\text {min }}=3.1^{\circ}$
$h=-10 \rightarrow 10$
$k=-13 \rightarrow 13$
$l=-17 \rightarrow 17$

Refinement

Refinement on F^{2}

Least-squares matrix: full

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.120$
$S=1.11$
1353 reflections
91 parameters
0 restraints

Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0618 P)^{2}+0.5934 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.26$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.21$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
C11	0.0000	$0.47434(6)$	0.2500	$0.0491(2)$
O1	$0.80009(19)$	$0.97343(12)$	$0.46240(10)$	$0.0527(4)$
H1	0.7609	1.0230	0.4976	0.079^{*}
N1	1.0000	$0.76737(19)$	0.2500	$0.0380(4)$
O1W	$0.8401(3)$	$0.38706(18)$	$0.42729(16)$	$0.0882(8)$
C1	$0.8456(2)$	$1.03196(17)$	$0.38880(13)$	$0.0440(4)$
O2	$0.8329(2)$	$1.14346(13)$	$0.37602(13)$	$0.0691(5)$
C2	$0.9224(2)$	$0.95307(16)$	$0.31833(12)$	$0.0388(4)$
C3	$0.9200(2)$	$0.82364(16)$	$0.31650(12)$	$0.0387(4)$
C4	$0.8353(3)$	$0.73948(19)$	$0.37910(16)$	$0.0569(5)$
H4A	0.8362	0.6563	0.3545	0.085^{*}
H4B	0.7240	0.7664	0.3784	0.085^{*}
H4C	0.8915	0.7417	0.4446	0.085^{*}
C5	1.0000	$1.0148(2)$	0.2500	$0.0395(5)$
H5	1.0000	1.1011	0.2500	0.047^{*}
H1A	1.0000	$0.679(4)$	0.2500	$0.066(9)^{*}$
H2	$0.844(4)$	$0.315(4)$	$0.422(2)$	$0.097(11)^{*}$
H2A	$0.880(4)$	$0.409(3)$	$0.380(3)$	$0.094(10)^{*}$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl 1	$0.0579(4)$	$0.0409(4)$	$0.0525(4)$	0.000	$0.0217(3)$	0.000

O1	$0.0749(9)$	$0.0434(8)$	$0.0461(8)$	$0.0062(6)$	$0.0306(7)$	$-0.0030(5)$
N1	$0.0476(11)$	$0.0288(10)$	$0.0412(11)$	0.000	$0.0183(8)$	0.000
O1W	$0.152(2)$	$0.0408(9)$	$0.0924(14)$	$-0.0033(10)$	$0.0889(15)$	$-0.0088(8)$
C1	$0.0525(10)$	$0.0364(9)$	$0.0466(10)$	$-0.0028(7)$	$0.0190(8)$	$-0.0070(7)$
O2	$0.1067(13)$	$0.0324(7)$	$0.0792(11)$	$-0.0005(7)$	$0.0505(9)$	$-0.0073(7)$
C2	$0.0440(9)$	$0.0346(8)$	$0.0403(9)$	$-0.0001(6)$	$0.0149(7)$	$-0.0022(6)$
C3	$0.0455(9)$	$0.0335(9)$	$0.0399(9)$	$-0.0003(6)$	$0.0160(7)$	$-0.0009(6)$
C4	$0.0809(14)$	$0.0382(10)$	$0.0607(12)$	$-0.0052(9)$	$0.0414(11)$	$0.0003(8)$
C5	$0.0453(12)$	$0.0294(11)$	$0.0459(13)$	0.000	$0.0137(10)$	0.000

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{O} 1-\mathrm{C} 1$	$1.300(2)$
$\mathrm{O} 1-\mathrm{H} 1$	0.8200
$\mathrm{~N} 1-\mathrm{C} 3$	$1.3513(18)$
$\mathrm{N} 1-\mathrm{C} 3{ }^{\mathrm{i}}$	$1.3513(18)$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	$0.95(4)$
$\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 2$	$0.79(4)$
$\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 2 \mathrm{~A}$	$0.81(4)$
$\mathrm{C} 1-\mathrm{O} 2$	$1.218(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.501(2)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{H} 1$	109.5
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 3$	$126.6(2)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	$116.68(10)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	$116.68(11)$
$\mathrm{H} 2-\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 2 \mathrm{~A}$	$101(3)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	$124.43(16)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	$120.00(16)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$115.55(16)$
$\mathrm{C} 5-\mathrm{C} 2-\mathrm{C} 3$	$118.33(15)$
$\mathrm{C} 5-\mathrm{C} 2-\mathrm{C} 1$	$116.78(16)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$124.89(15)$
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2$	$117.01(15)$

C2-C5	$1.386(2)$
C2-C3	$1.396(3)$
C3-C4	$1.495(2)$
C4-H4A	0.9600
C4-H4B	0.9600
C4-H4C	0.9600
C5-C2	$1.386(2)$
C5-H5	0.9300
N1-C3-C4	$115.88(16)$
C2-C3-C4	$127.09(15)$
C3-C4-H4A	109.5
C3-C4-H4B	109.5
H4A-C4-H4B	109.5
C3-C4-H4C	109.5
H4A-C4-H4C	109.5
H4B-C4-H4C	109.5
C2 ${ }^{\text {i }}$ - C5-C2	$122.6(2)$
C2 $2-\mathrm{C} 5-\mathrm{H} 5$	118.7
C2-C5-H5	118.7

Symmetry codes: (i) $-x+2, y,-z+1 / 2$.

Hydrogen-bond geometry ($\left.\AA,{ }^{\circ}\right)$

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 1 \cdots \mathrm{O}_{1} \mathrm{~W}^{\mathrm{ii}}$	0.82	1.72	$2.537(2)$	173.
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{Cl} 1^{\mathrm{iii}}$	$0.95(4)$	$2.21(4)$	$3.160(2)$	$180 .(1)$
$\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 2 \cdots 2^{\mathrm{iv}}$	$0.79(4)$	$1.95(4)$	$2.720(2)$	$166(3)$
$\mathrm{O}^{\mathrm{iv}}-\mathrm{H} 2 \mathrm{~A} \cdots \mathrm{Cl} 1^{\mathrm{iii}}$	$0.81(4)$	$2.29(4)$	$3.096(2)$	$177(3)$

Symmetry codes: (ii) $-x+3 / 2,-y+3 / 2,-z+1$; (iii) $x+1, y, z$; (iv) $x, y-1, z$.

Fig. 1

supplementary materials

Fig. 2

